Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Zinc starvation induces autophagy in yeast.

Identifieur interne : 000693 ( Main/Exploration ); précédent : 000692; suivant : 000694

Zinc starvation induces autophagy in yeast.

Auteurs : Tomoko Kawamata ; Tetsuro Horie [Japon] ; Miou Matsunami ; Michiko Sasaki ; Yoshinori Ohsumi [Japon]

Source :

RBID : pubmed:28264932

Descripteurs français

English descriptors

Abstract

Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes.

DOI: 10.1074/jbc.M116.762948
PubMed: 28264932
PubMed Central: PMC5437255


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Zinc starvation induces autophagy in yeast.</title>
<author>
<name sortKey="Kawamata, Tomoko" sort="Kawamata, Tomoko" uniqKey="Kawamata T" first="Tomoko" last="Kawamata">Tomoko Kawamata</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Horie, Tetsuro" sort="Horie, Tetsuro" uniqKey="Horie T" first="Tetsuro" last="Horie">Tetsuro Horie</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>the Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>the Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsunami, Miou" sort="Matsunami, Miou" uniqKey="Matsunami M" first="Miou" last="Matsunami">Miou Matsunami</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sasaki, Michiko" sort="Sasaki, Michiko" uniqKey="Sasaki M" first="Michiko" last="Sasaki">Michiko Sasaki</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and yohsumi@iri.titech.ac.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology</wicri:regionArea>
<wicri:noRegion>Tokyo Institute of Technology</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28264932</idno>
<idno type="pmid">28264932</idno>
<idno type="doi">10.1074/jbc.M116.762948</idno>
<idno type="pmc">PMC5437255</idno>
<idno type="wicri:Area/Main/Corpus">000860</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000860</idno>
<idno type="wicri:Area/Main/Curation">000860</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000860</idno>
<idno type="wicri:Area/Main/Exploration">000860</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Zinc starvation induces autophagy in yeast.</title>
<author>
<name sortKey="Kawamata, Tomoko" sort="Kawamata, Tomoko" uniqKey="Kawamata T" first="Tomoko" last="Kawamata">Tomoko Kawamata</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Horie, Tetsuro" sort="Horie, Tetsuro" uniqKey="Horie T" first="Tetsuro" last="Horie">Tetsuro Horie</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>the Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>the Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsunami, Miou" sort="Matsunami, Miou" uniqKey="Matsunami M" first="Miou" last="Matsunami">Miou Matsunami</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sasaki, Michiko" sort="Sasaki, Michiko" uniqKey="Sasaki M" first="Michiko" last="Sasaki">Michiko Sasaki</name>
<affiliation>
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</nlm:affiliation>
<wicri:noCountry code="subField">Yokohama 226-8503 and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and yohsumi@iri.titech.ac.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology</wicri:regionArea>
<wicri:noRegion>Tokyo Institute of Technology</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Dehydrogenase (genetics)</term>
<term>Alcohol Dehydrogenase (metabolism)</term>
<term>Autophagy (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Proteolysis (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol dehydrogenase (génétique)</term>
<term>Alcohol dehydrogenase (métabolisme)</term>
<term>Autophagie (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéolyse (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Zinc (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Dehydrogenase</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Dehydrogenase</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transcription Factors</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alcohol dehydrogenase</term>
<term>Complexes multiprotéiques</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol dehydrogenase</term>
<term>Complexes multiprotéiques</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Proteolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Autophagie</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Protéolyse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28264932</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>292</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Zinc starvation induces autophagy in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>8520-8530</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M116.762948</ELocationID>
<Abstract>
<AbstractText>Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes.</AbstractText>
<CopyrightInformation>© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kawamata</LastName>
<ForeName>Tomoko</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horie</LastName>
<ForeName>Tetsuro</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsunami</LastName>
<ForeName>Miou</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sasaki</LastName>
<ForeName>Michiko</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ohsumi</LastName>
<ForeName>Yoshinori</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503 and yohsumi@iri.titech.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C103264">ZAP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.1</RegistryNumber>
<NameOfSubstance UI="C516801">ADH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.1</RegistryNumber>
<NameOfSubstance UI="D000426">Alcohol Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000426" MajorTopicYN="N">Alcohol Dehydrogenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="N">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">TOR complex (TORC)</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">metal</Keyword>
<Keyword MajorTopicYN="Y">starvation</Keyword>
<Keyword MajorTopicYN="Y">yeast</Keyword>
<Keyword MajorTopicYN="Y">zinc</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28264932</ArticleId>
<ArticleId IdType="pii">M116.762948</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M116.762948</ArticleId>
<ArticleId IdType="pmc">PMC5437255</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Yeast. 2004 Aug;21(11):947-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15334558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 May;19(5):2039-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2001 Jul;281(1):E25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Nov;8(11):931-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17712358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Jun 30;16(9):857-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10861908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):403-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;58(1):137-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3319783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 May 5;210(1):126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7741731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 3;330(6009):1344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2009 Sep;57(12):1351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bacteriol Rev. 1974 Jun;38(2):164-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4599449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):25979-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10851233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cell Biol. 2012;2012:219625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22666256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 1;20(21):5971-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Dec 13;25(24):5726-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17139254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2014 Jun;21(6):513-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24793651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2015 Jan 13;34(2):154-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25468960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Sep 18;150(6):1507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 May 19;292(20):8533-8543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28320861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 16;334(6062):1524-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22096102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 Dec;3(6):825-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12479808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2010 Dec;23 (6):997-1013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20524045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Trace Elem Res. 2013 Dec;156(1-3):350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24061963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Sep 25;513(7519):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25209664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2014 Dec;27(6):1087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25012760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2009;335:71-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2011 Oct;36(10):524-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21840721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18565-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24366340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(6):e1002699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Jul;15(10B):963-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10407276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Apr;72(2):320-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19298366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2016 Jul 11;38(1):86-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27404361</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Kawamata, Tomoko" sort="Kawamata, Tomoko" uniqKey="Kawamata T" first="Tomoko" last="Kawamata">Tomoko Kawamata</name>
<name sortKey="Matsunami, Miou" sort="Matsunami, Miou" uniqKey="Matsunami M" first="Miou" last="Matsunami">Miou Matsunami</name>
<name sortKey="Sasaki, Michiko" sort="Sasaki, Michiko" uniqKey="Sasaki M" first="Michiko" last="Sasaki">Michiko Sasaki</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Horie, Tetsuro" sort="Horie, Tetsuro" uniqKey="Horie T" first="Tetsuro" last="Horie">Tetsuro Horie</name>
</region>
<name sortKey="Ohsumi, Yoshinori" sort="Ohsumi, Yoshinori" uniqKey="Ohsumi Y" first="Yoshinori" last="Ohsumi">Yoshinori Ohsumi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000693 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000693 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28264932
   |texte=   Zinc starvation induces autophagy in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28264932" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020